当前位置:笔书阁>都市言情>学霸从改变开始> 第426章 四种途径
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第426章 四种途径(1 / 4)

在“陈氏定理”上画了个圈。

陈舟在想,也许有一天,也许用不了多久。

“陈氏定理”会变成完整的哥德巴赫定理。

当然,从某种意义来说,哥德巴赫定理,也可以称之为“陈氏定理”。

至于这个“陈”,自然就是陈舟的陈了。

收回这个还算遥远的思绪,陈舟的注意力,再次集中到哥德巴赫猜想身上。

从以往的研究来看,对哥猜的研究途径,分为四种。

分别是殆素数、例外集合、小变量的三素数定理,以及几乎哥德巴赫问题。

殆素数就是素因子个数不多的正整数。

设n是偶数,虽然不能证明n是两个素数之和,但足以证明它能够写成,两个殆素数的和。

也就是a+b。

其中,a和b的素因子个数,都不太多。

也就是陈舟刚写下的,哥猜的命题。

而“a+b”命题的最新进展,便是陈老先生的“1+2”了。

至于,终极奥义的“1+1”,则遥遥无期。

在殆素数这一方向上的进展,都是用筛法所得到的。

可是,陈老先生把筛法用到极致,也只是停留在了“1+2”上面。

所以,很多数学家也认为,现在的研究,很难再突破陈老先生在筛法上面的运用。

这也是这一方向的研究,这么长时间停滞不前的最大原因。

在没有找到更合理,或者说能够进一步发挥筛法作用的工具之前。

“1+1”的证明,始终不会有较大的突破。

这一观点,陈舟也是认同的。

然而,一个被运用到极致的工具,想要再突破,谈何容易?

对于一个成熟的数学工具来说,新的数学思想的引入,也会变得更为困难。

但好在,陈舟在研究克拉梅尔猜想时,或多或少,或有意或无意的,就搞出

上一章 目录 +书签 下一页