进行数据的统计分析。
因为9组数据的硼源选择都是b(ch3)3,所以这次的实验倒是不需要考虑硼源的影响了。
陈舟完全的投入到了紧张的数据分析之中。
也许是知道时间很紧的原因,陈舟手上的动作,也比平时加快了不少。
无论是敲击键盘的速度,还是拿笔在草稿纸上进行记录。
陈舟都尽量的在追赶着地球转动的步伐。
p型掺杂的实验数据搞定之后,陈舟开始处理n型掺杂实验的数据。
n型掺杂,也就是磷掺杂。
除了考虑和p型掺杂一样的磷的掺杂浓度、衬底晶面、温度这些基本的影响因素。
还有一点需要考虑。
那就是磷掺杂金刚石的电子散射机制,对迁移效率,同样有影响。
金刚石半导体中的电子散射机制,与内部的声学声子、谷间声子、离子杂质和中性杂质有关。
在室温下,当磷的掺杂浓度超过1x10^18/cm3时,杂质散射或缺陷态散射其主要作用。
而当磷的掺杂浓度低于这个浓度时,杂质电离散射变为声学声子散射。
当然,这种简单的判别并不充分。
因为磷掺杂自身也会引入其他散射。
像磷—碳共价键的键长失配导致的内应力引起的散射。
另外,在不同的温度区间,主要的散射机制也不同。
低温条件下,声学声子散射为主要散射机制。
而高温时,电子则受到声学声子散射和谷间声子散射的共同作用。
好在先前陈舟已经跟彭飞确认了磷的掺杂浓度是在4x10^15/cm3~2x10^15/cm3区间内依次选取的。
再根据手头的实验数据,倒是不难判断散射机制的主要因素。
n型掺杂的数据结束后,还剩下共掺杂的数据。
共掺杂也是n型掺杂,有
本网站为网友提供小说上传储存空间平台,为网友提供在线阅读交流、txt下载,平台上的所有文学作品均来源于网友的上传
用户上传的文学作品均由网站程序自动分割展现,无人工干预,本站自身不编辑或修改网友上传的内容(请上传有合法版权的作品)
如发现本站有侵犯权利人版权内容的,请向本站投诉,一经核实,本站将立即删除相关作品并对上传人ID账号作封号处理