当前位置:笔书阁>都市言情>学霸从改变开始> 第174章 举个例子
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第174章 举个例子(1 / 4)

“27”这个数在代入“冰雹猜想”的计算方法后,它的上浮下沉是非常剧烈的。

陈舟整整写了密密麻麻的一张草稿纸。

因为“27”一直到9232,才到达顶峰。

而这其中经过了77步的计算。

随后,当“27”回归到谷底值1时。

又经过了34步的计算。

在冰雹猜想中,这种计算步骤被称为雹程。

而27的全部的雹程需要整整111步!

更重要的是,9232已经是27的342倍还要多。

如果以瀑布般的直线下落,也就是2的n次方来比较的话。

那具有同样雹程的数字,也就是2的111次方。

这是一个何其庞大的数字!

经过这样的对比,便能看出来27这个数,具有怎样的剧烈波动。

陈舟之所以选择这个数,也是因为他对冰雹猜想的了解。

在张中原这节小班课之前,陈舟在寻找课题方向时,就对冰雹猜想有过一些想法。

27这个数的特殊性,还在于它只能由54变来。

而54,则又必然是从108跌落而来。

陈舟停下手中的笔,轻轻点了点草稿纸。

然后拿出一张新的草稿纸,开始写下【4k、3m+1(k,m为自然数)】。

这是经过游戏的验证规律得来的玩意。

倒不是陈舟得出的,而是他看到的内容。

在冰雹猜想中,仅仅在兼具4k和3m+1处的数字,才能产生“冰雹树”的分叉。

所谓分叉,就是和2的n次方的交集。

但是不包括4这个数字。

所以,在“冰雹树”中,数字16处是第一处分叉,然后是数字64。

以后每隔一段数字,产生就会产生一支新的支流。

也因此,27之上,肯定可以出现一

上一章 目录 +书签 下一页