下午陈舟的堂弟陈勇便背着书包过来了。
陈舟把他和陈晓安排在一块,让他们自己写作业,有不懂的就问他。
很顺手的,陈舟就把陈勇的一本数学教材丢给了陈晓。
陈晓默默的接过,他知道,这个寒假,这本教材,会一直伴随他的。
陈舟看了一会两人,便回屋把自己的笔记本草稿纸等一应装备拿了出来。
打开笔记本上关于clifford分析相关课题的文件。
他现在在研究的是复clifford分析中cauchy-pompeiu公式的相关部分。
简单梳理了一下思路,陈舟便开始在草稿纸上写着:
【w1*dξ+w2*dξ=∑j=0→n[(?w1*/?ξj+?w2*/?ξj)ej]=0……(1)】
【dξw1*+dξw2*=∑j=0→n[ej(?w1*/?ξj+?w2*/?ξj)]=0……(2)】
这两个是很重要的等式,需要先证明出来。
陈舟思考了一会,对上面两个等式做出了一些变换,然后着手开始证明。
【∑j=0→n[(?w1*/?ξj+?w2*/?ξj)ej]=……】
【显然,这两个对应项的和为零,其余项以此类推……故上式成立。】
【同理可证dξw1*+dξw2*=0】
证明完毕,陈舟又写下下一个需要证明的内容。
【设Ω?c^(n+1)为有界区域,设f,g∈c1(Ω,cl0,n(c)),定义df=?f+▔?f,……,则有d[f?(w1+w2)]=df∧(w1+w2)。】
略一思索,陈舟开始证明。
【因为d(f?g)=df?g+f?dg,所以d[f?(w1+w2)]=df∧(w1+w2)+f?d(w1+w2)=df∧(w1+w2)+f[?(w1+w2)+▔
本网站为网友提供小说上传储存空间平台,为网友提供在线阅读交流、txt下载,平台上的所有文学作品均来源于网友的上传
用户上传的文学作品均由网站程序自动分割展现,无人工干预,本站自身不编辑或修改网友上传的内容(请上传有合法版权的作品)
如发现本站有侵犯权利人版权内容的,请向本站投诉,一经核实,本站将立即删除相关作品并对上传人ID账号作封号处理